Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 598-605, 2018.
Article in Chinese | WPRIM | ID: wpr-687589

ABSTRACT

The accurate position of the center of rotation (COR) is a key factor to ensure the quality of computed tomography (CT) reconstructed images. The classic cross-correlation matching algorithm can not satisfy the requirements of high-quality CT imaging when the projection angle is 0 and 180°, and thus needs to be improved and innovated. In this study, considering the symmetric characteristic of the 0° and flipped 180° projection data in sinogram, a novel COR correction algorithm based on the translation and match of the 0° and 180° projection data was proposed. The OTSU method was applied to reduce noise on the background, and the minimum offset of COR was quantified using the -norm, and then a precise COR was obtained for the image correction and reconstruction. The Sheep-Logan simulation model with random gradients and Gaussian noise and the real male SD rats samples which contained the heterogenous tooth image and the homogenous liver image, were adopted to verify the performance of the new algorithm and the cross-correlation matching algorithm. The results show that the proposed algorithm has better robustness and higher accuracy of the correction (when the sampled data is from 10% to 50% of the full projection data, the COR value can still be measured accurately using the proposed algorithm) with less computational burden compared with the cross-correlation matching algorithm, and it is able to significantly improve the quality of the reconstructed images.

SELECTION OF CITATIONS
SEARCH DETAIL